Tetrahedron Letters 51 (2010) 4490-4493

Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Synthesis of novel thiadiazoles and bis-thiadiazoles from carbonothioic dihydrazide

Abdelwahed R. Sayed

Department of Chemistry, Faculty of Science, University of Beni Suef, Egypt

ARTICLE INFO

ABSTRACT

Article history: Received 6 March 2010 Revised 30 May 2010 Accepted 11 June 2010 Available online 17 June 2010

Keywords: Hydrazonoyl halides Carbonothioic dihydrazide Bis-hydrazone Thiadiazole Oxidative cyclization

1,3,4-Thiadiazoles have been screened for their antibacterial and antifungal,¹⁻⁴ anti-inflammatory,⁵ and anti-tuberculosis activities,⁶ as well as for their activity against cancer.⁷ They have also been applied in the areas of pharmaceutical, agricultural, industrial, and polymer chemistry.⁸⁻¹⁷ The 1,2,4-triazolo[3,4-*b*][1,3,4]thiadiazole ring system was first reported by Kanaoka,¹⁸ and much attention has been devoted to the chemistry of 3,6-disubstituted derivatives of this class of heterocycles as many of them possess biological activity. For example, some of these derivatives were reported to possess antibacterial,^{19–21} analgesic,²² and fungicidal activities²³ as well as interesting CNS depressant action,²⁴ whereas others exhibited moderate antimalarial and antitumor activity.²⁵ Herein the synthesis of 1,3,4-thiadiazole, bis(1,3,4-thiadiazole), and triazole[3,4-*b*][1,3,4] thiadiazole derivatives is reported.

Treatment of carbonothioic dihydrazide^{26a} (**2a**) with the appropriate hydrazonoyl halide²⁷ **1** in ethanol under heating gave a single isolated product in each case. For example, the reaction of **1a** with **2a** in boiling ethanol afforded product **3a** via the elimination of HBr and hydrazine. The IR spectrum of **3a** revealed absorption bands at 3300 and 3200 cm⁻¹ due to the NH₂ group. The ¹H NMR spectrum showed signals at δ 2.51 (s, 3H, CH₃), δ 5.70 (s, 2H, NH₂, exchangeable with D₂O), and at δ 7.35–8.46 (m, 8H, ArH). Compound **3a** was also obtained via the reaction of **1a** with methyl hydrazine carbodithioate^{26b} (**2b**) in ethanolic triethylamine and was an identical product in all respects (mp, mixed mp, and spectra) with that obtained from **2a**. Similarly, compounds **1b–g**

reacted with **2a** or **2b** to afford 1,3,4-thiadiazoles **3b–g** as shown in Scheme 1.

© 2010 Elsevier Ltd. All rights reserved.

Efficient syntheses of 1,3,4-thiadiazoles and bis-thiadiazoles by the reaction of hydrazonoyl halides with

carbonothioic dihydrazide are reported. In addition, 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole is obtained via

oxidative cyclization of bis-(substituted methylene)carbonothioic dihydrazone.

Compound **3a** reacted with benzaldehyde to give the corresponding hydrazone **4a**. The ¹H NMR spectrum of **4a** exhibited resonances at δ 2.52 (s, 3H, CH₃), and δ 7.49–8.51 (m, 14H, ArH, vinyl CH=) and its ¹³C NMR spectrum showed signals at appropriate chemical shifts. Compound **4a** was also obtained via the reaction of **1a** with 2-(phenylmethylene)carbonothioic dihydrazide²⁸ (**5**) in ethanolic triethylamine and was identical in all respects (mp, mixed mp, and spectra) with that obtained from **3a**. Similarly, reactions of **1b–g** with **5** afforded hydrazones **4b–g** as shown in Scheme 1.

Also, the reaction of **2a** with *N*,*N*'-diphenylethane(bis-hydrazonoyl dichloride)²⁹ (**6**) in ethanol gave bis-thiadiazole **7** as the only product. The molecular formula of 7, C₁₆H₁₄N₈S₂, was consistent with the elimination of 2HCl and 2NH₂NH₂. The structure of 7 was elucidated by elemental analysis and spectroscopy. The IR spectrum of **7** revealed absorption bands at 3290 and 3274 cm⁻¹ due to the NH₂ group. The ¹H NMR spectrum showed signals at δ 5.73 (s, 2H, NH₂, exchangeable with D_2O) and δ 7.23–7.91 (m, 10H, ArH). Compound 7 was also obtained via the reaction of 6 with hydrazine carbodithioate 2b in ethanolic triethylamine and was identical in all respects (mp, mixed mp, and spectra) with that obtained from 2a (Scheme 2). Bis-thiadiazole 7 reacted with benzaldehyde to give the corresponding bis-hydrazone 8, the structure of which was confirmed by elemental analysis and spectral data. The ¹H NMR spectrum of **8** exhibited a multiplet resonance at δ 7.32–8.52 (m, 22H, ArH, and vinyl CH=). Compound **8** was also obtained via the reaction of 6 with 2-(phenylmethylene)carbon-

E-mail address: arashad_2003@yahoo.com

$$\label{eq:rescaled} \begin{split} & \mathsf{R}:a,4\text{-}\mathsf{CH}_3\mathsf{C}_6\mathsf{H}_4; b,4\text{-}\mathsf{FC}_6\mathsf{H}_4; c,4\text{-}\mathsf{ClC}_6\mathsf{H}_4; d,3\text{-}\mathsf{BrC}_6\mathsf{H}_4; e,2\text{-}\mathsf{furanyl};\\ & \mathsf{f},2\text{-}\mathsf{thienyl}; g,2\text{-}\mathsf{pyridyl}\\ & \mathsf{Ar}=4\text{-}\mathsf{NO}_2\mathsf{C}_6\mathsf{H}_4 \end{split}$$

Scheme 1. Synthesis of 1,3,4-thiadiazole derivatives 3a-g and 4a-g.

Scheme 2. Synthesis of bis(1,3,4-thiadiazole) derivatives 7 and 8.

othioic dihydrazide (**5**) in ethanolic triethylamine and was identical (mp, mixed mp, and spectra) with that obtained from **7**.

We previously reported the synthesis of 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole³⁰ via oxidative cyclization of an asymmetric bis-hydrazone. These principles were extended to the synthesis of the new amine **16** as shown in Scheme 3. Compound **10** is also

novel and was prepared by the condensation of **5** with 4-nitrobenzaldehyde as shown in Scheme 3. Treatment of the bis-hydrazone **10** with ferric chloride in ethanol yielded a single crystalline product that was identified as **12** and not the anticipated thiadiazole **11**. The structure of **12** was confirmed by an alternative synthesis involving the reaction of **15** with 4-nitrobenz-

Scheme 3. Synthesis of 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives 10, 14 and 16.

aldehyde.^{31,32} Elemental analysis and the mass spectrum revealed that the product **12** had two hydrogen atoms less than the precursor bis-hydrazone **10**. Its ¹H NMR spectra showed the presence of one methine proton -N=CH- and one hydrazone (-NHN=C). Further oxidation of **12** with ferric chloride led to 6-phenyl-3-(4-nitrophenyl)-1,2,4-triazolo[3,4-*b*][1,3,4]thiadiazole (**14**).

The structure of **14** was confirmed by elemental analysis and from spectral data (MS, IR and ¹H NMR). The ¹H NMR spectrum of **14** was devoid of the signal characteristic of the -NH-N=CHproton that appeared in the spectra of precursors **10** and **12**. Isomeric compound **13** was prepared according to the literature.³³ Compounds **13** and **14** have similar structures which are almost identical according to spectral analysis. Thus the structure of compound **14** was confirmed by an unambiguous alternative synthesis starting from **15**. Reduction of compound **14** with H₂/Pd gave the aniline derivative **16** (molecular formula C₁₅H₁₁N₅S). The IR spectrum revealed absorption bands at 3359 and 3205 cm⁻¹ due to the NH₂ group. Its ¹H NMR spectrum showed signals at δ 4.65 (s, 2H, NH₂) and δ 7.25–8.40 (m, 9H, ArH).

In summary, new and efficient syntheses of 1,3,4-thiadiazoles, bis-thiadiazoles, and an aniline derivative have been reported.

Acknowledgments

Professor J. S. Wiggins, University of Southern Mississippi, USA is thanked for providing laboratory facilities and Professor A. O. Abdelhamid for the valuable discussions.

Supplementary data

Supplementary data (experimental details for the synthesis and characterization for all the new compounds) associated with this article can be found, in the online version, at doi:10.1016/j.tetlet.2010.06.060.

References and notes

- 1. Trost, B. M. Chem. Rev. 1978, 78, 363.
- 2. Ganellin, R. J. Med. Chem. 1981, 24, 913.
- 3. Dogan, H. N.; Rollas, S.; Erdeniz, H. Farmaco 1998, 53, 462.
- Dogan, H. N.; Duran, A.; Rollas, S.; Sener, G.; Uysal, M. K.; Gulen, D. Bioorg. Med. Chem. 2002, 10, 2893.
- 5. Palaska, E.; Sahin, G.; Kelicen, P.; Turlu, N. T.; Altinok, G. Farmaco 2002, 57, 101.
- 6. Karakus, S.; Rollas, S. Farmaco 2002, 57, 577.

- 7. Terzioglu, N.; Gursoy, A. Eur. J. Med. Chem. 2003, 38, 781.
- 8. Molina, P.; Alajarin, M.; Lapez, L. C. J. Chem. Res. 1989, 5, 140.
- 9. Eisa, H. M. Mansoura J. Pharm. Sci. 1990, 6, 1.
- Kihara, Y.; Kabashima, S.; Uno, K.; Okawara, T.; Yamasaki, T.; Furukawa, M. Synthesis 1990, 1020.
- 11. Bayoumy, B. E.; El-Bahie, S.; Youssif, S. Pol. J. Chem. 1991, 65, 1279.
- 12. Mohan, J.; Anjaneyulu, G. S. R.; Yamini, K. V. S. J. Indian Chem. Soc. 1991, 68, 474.
- 13. Bano, Q.; Tiwari, N.; Giri, S. Indian J. Chem. 1992, 31B, 467.
- 14. Mohan, J.; Singh, V.; Kataria, S. Indian J. Heterocycl. Chem. 1993, 3, 43.
- 15. Dubey, A. K.; Sangwan, N. K. Indian J. Heterocycl. Chem. 1994, 3, 277.
- Talawar, M. B.; Laddi, U. V.; Somannavar, Y. S.; Bennur, R. S.; Bennur, S. C. Indian J. Heterocycl. Chem. 1995, 4, 297.
- 17. Pramanik, S. S.; Mukherjee, A. J. Indian Chem. Soc. 1998, 75, 53.
- 18. Kanaoka, M. Yakugaku Zasshi 1956, 76, 1133.
- 19. Mohan, J.; Anjaneyulu, G. S. R.; Verma, P. Curr. Sci. 1989, 58, 1028.
- 20. Omar, A. M.; Aboul-Wafa, O. M. J. Heterocycl. Chem. 1986, 23, 1339.
- Ghannoum, M. A.; Eweiss, N. F.; Bahajaj, A. A.; Quereshi, M. A. Microbios 1983, 37, 151.

- 22. Ahluwalia, V. K.; Arora, K. K.; Kaur, G. Indian J. Chem. 1986, 25B, 556.
- 23. Li, D.; Fu, H. Phosphorus, Sulfur Silicon Relat. Elem. 2008, 183, 2229.
- 24. Deshmukh, A. A.; Mody, M. K.; Ramalingamat, T.; Sattur, P. B. Indian J. Chem. 1984, 23B, 793.
- Invidtiata, F. P.; Grimoudo, S.; Giammanco, P.; Giammanco, L. Farmaco 1991, 46, 1489.
- (a) Autenrieth, W.; Henfner, H. Ber. Dtsch. Chem. Ges. **1925**, 58B, 2151; (b) Beger, J.; Thielemann, C.; Thong, P. D. J. Prakt. Chem. **1979**, 321, 959.
- 27. Scott, F. L.; Aylward, J. B. Tetrahedron Lett. 1965, 13, 841.
- 28. Kabashima, S.; Okawara, T.; Yamasaki, T.; Furukawa, M. *Heterocycles* **1990**, 31, 1129.
- Grundmann, C.; Datta, S. K.; Sprecher, R. F. Justus Liebigs Ann. Chem. 1971, 744, 88.
- 30. Shawali, A. S.; Sayed, A. R. J. Sulfur Chem. 2006, 27, 233.
- Carvalho, S. A.; Da Silva, E. F.; Santa-Rita, R. M.; De Castro, S. L.; Fraga, C. A. M. Bioorg. Med. Chem. Lett. 2004, 14, 5967.
- 32. Kurzer, F.; Secker, J. L. Tetrahedron 1981, 37, 1429.
- 33. Chadha, V. K.; Sharma, G. R. J. Indian Chem. 1980, 57, 1112.